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Inverse Variational Problem for Nonlinear
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The Helmholtz solution of the inverse problem for the variational calculus is used to
study the analytic or Lagrangian structure of a number of nonlinear evolution equa-
tions. The quasilinear equations in the KdV hierarchy constitute a Lagrangian system.
On the other hand, evolution equations with nonlinear dispersive terms (FNE) are
non-Lagrangian. However, the method of Helmholtz can be judiciously exploited to
construct Lagrangian system of such equations. In all cases the derived Lagrangians are
gauge equivalent to those obtained earlier by the use of Hamilton’s variational principle
supplemented by the methodology of integer-programming problem. The free Hamil-
tonian densities associated with the so-called gauge equivalent Lagrangians yield the
equation of motion via a new canonical equation similar to that of Zakharov, Faddeev
and Gardner. It is demonstrated that the Lagrangian system of FNE equations supports
compacton solutions.
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1. INTRODUCTION

The calculus of variations plays a crucial role in a wide variety of physical
problems ranging from classical mechanics to quantum field theory. Determination
of the time behavior of a mechanical system is a typical variational problem of
classical dynamics. Here one deals with a special class of functionals called the
action. The process of minimizing the action functional for the variation of a
function goes by the name Hamilton’s variational principle. Euler first discovered
the necessary condition that a minimizing function must satisfy. Now a days this
is known as the Euler-Lagrange equation and the function which satisfies this
equation is called the Lagrangian function. It is widely believed that all physical
information of a system is encoded in the Lagrangian function. For complex
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dynamical systems, the method of Euler and Lagrange is more powerful than
Newton’s laws of motion. Towards the end of nineteenth century, the concept of
differentiation was generalized by Volterra, Hadamard and three of his students
Fréchet, Gâteaux and Hilbert to infinite dimensional spaces thereby providing
variational calculus with a solid base for applications to mechanics of continuous
media and nonlinear evolution equations (Blanchard and Brüning, 1992). In the
calculus of variations one is concerned with two types of problems, namely,
the direct and inverse problem of newtonian mechanics. The direct problem is
essentially the conventional one in which one first assigns a Lagrangian and then
computes the equations of motion through Lagrange’s equations. As opposed to
this, the inverse problems begins with the equations of motion and then constructs
a Lagrangian consistent with the variational principle.

In the present work we shall deal with the inverse problem of variational
calculus for the quasilinear equations of the Korteweg-de Vries (KdV) hierarchy
(Lax, 1968) as well as a fully nonlinear evolution (FNE) equation (Rosenau and
Hyman, 1993). We call equations of the KdV hierarchy as quasilinear because
the dispersive behavior of the solution of each equation is governed by a linear
term. The dispersion produced is compensated by nonlinear effects resulting in the
formation of exponentially localized solitons. As opposed to this, the dispersive
term is nonlinear for a FNE equation. In general, the solitary wave solutions of
FNE equations compactify under nonlinear dispersion to produce deep qualitative
changes in the nature of genuinely nonlinear phenomena leading to the formation
of compactons, cuspons, and tipons (Rosenau, 1997).

The inverse problem of the calculus of variation was solved by Helmholtz
during the end of the nineteenth century (Olver, 1993). For continuum mechanics
the Helmholtz version of the inverse problem proceeds by considering an r−tuple
of differentiable functions written as

P [u] = P
(
x, u(n)) εAr (1)

and then defining the so-called Fréchet derivative. The Fréchet derivative of P is
the differential operator DP ;Aq → Ar and is given by

DP (Q) = d

dε

∣∣∣∣
ε=0

P [u + ε Q[u]] (2)

for any QεAq . The Helmholtz condition asserts that P is the Euler-Lagrange ex-
pression for some variational problem iff DP is self-adjoint. When self-adjointness
is guaranteed, a Lagrangian for P can be explicitly constructed using the homotopy
formula

L[u] =
∫ 1

0
uP [λu] dλ. (3)
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The solution presented above is very neat, from the wider perspective of deter-
mining which systems of differential equations arise from variational principle.
However, there are situations where the Helmholtz solution may turn out to be
somewhat unsatisfactory. For example, if DP is not self-adjoint for a system of dif-
ferential equations, we have to stop by inferring that the system is non-Lagrangian.
But one may be interested to construct similar system of equations, which follows
from Lagrangians because a non-Lagrangian system does not allow one to carry
out a linear stability check (Dey and Khare, 2000) as well as to derive a field
theory (Rosenau and Hyman, 1993).

In the present work we show that KdV and higher KdV equations satisfy
Helmholtz condition and form a Lagrangian system. As opposed to this, the FNE
equations are non-Lagrangian. We directly use the Helmholtz solution of the
inverse problem to construct expressions for Lagrangians for the equations in
the KdV hierarchy. We adapt the Helmholtz solution to introduce a Lagrangian
system of FNE equations. We observe that in both cases our solution of the
inverse problem leads to Lagrangian densities which are gauge equivalent to those
obtained by us using a method of dimensional analysis (Talukdar et al., 2002,
2003). Moreover, the free Hamiltonian densities obtained from the so-called gauge
equivalent Lagrangians do not yield the equation of motion when substituted in the
canonical equation of Zakharov and Faddeev (1971) and of Gardner (1971). This
observation has an old root in classical mechanics literature (Currie and Saletan,
1966). We take this opportunity to introduce another canonical equation which is
consistent with these Hamiltonian densities. In Sec. 2 we deal with the equations
of the KdV hierarchy and find that Hamiltonian densities obtained from our
Lagrangians satisfy a new canonical equation. In Section 3 we carry out a similar
analysis for the fully nonlinear evolution equation of Rosenau and Hyman (1993)
and find that this equation is non-Lagrangian. However, demanding variational
self-adjointness of a suitably chosen Euler-Lagrange expression (P [u]), we could
introduce a Lagrangian system of FNE equations which exhibit the same canonical
structure as observed for the KdV equations. Here we also demonstrate that
the modified Rosenau-Hyman equation having a Lagrangian structure possesses
compacton solution. Finally, we make some concluding remarks in Section 4.

2. EQUATIONS OF THE KDV HIERARCHY

One common trick to put the KdV equation

ut = u3x + 6uux (4)

into the variational form is to replace u(x, t) by a potential function defined by

w(x, t) =
∫ ∞

x

dy u(y, t) (5)
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such that

wx(x, t) = −u(x, t). (6)

Note that this trick works only for equations which are of odd order in space
derivatives and, fortunately for us, all higher KdV equations belong to this class.
From (4) and (6), we get

wxt = w4x − 6wxw2x (7)

which can be integrated from −∞ to x to give

wt = w3x − 3w2
x. (8)

Here we have applied the boundary condition, u(−∞, t) → 0. Calogero (1982)
could reduce (8) to the variational form

δ

∫ t2

t1

dt

∫ +∞

−∞
dx L(wt, wx, w2x) = 0 (9)

to define Lagrangian density

Lv = 1

2
wtwx + 1

2
w2

2x + w3
x . (10)

Let us now check if the result in (10) also follows from the Helmholtz theorem.
To achieve this we write from (7) the Euler-Lagrange expression

P [w] = w4x − 6wxw2x . (11)

Using (11), (2) gives the self-adjoint differential operator

DP = D4x − 6wxD2x − 6w2xDx, Dnx =
(

d

dx

)n

(12)

proving the existence of the Lagrangian for (4) or (7). The time independent part
of the Lagrangian density for P [w] can be obtained from (3) to write

L2 = 1

2
ww4x − 2wwxw2x . (13)

The total Lagrangian density for (7) is obtained by adding a velocity (wt ) dependent
part, L1 = 1

2wtwx to L2 and we have

Lh = 1

2
wtwx + 1

2
ww4x − 2wwxw2x . (14)

The subscripts v and h of L in (10) and (14) merely indicate that these results have
been obtained by direct application of variational principle and by making use of
the homotopy formula. Both Lagrangians are of first order in time derivative but
they differ in the order of space derivatives. In particular, Lv is of second order
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and Lh is of fourth order. It is interesting to note that both Lv and Lh lead to the
same canonical momentum density

π = 1

2
wx. (15)

This equation can not be inverted for the velocity wt implying that the Lagrangian
densities are degenerate (Sudarshan and Mukanda, 1974). Therefore, one must
use the Dirac’s theory of constraints (Dirac, 1964) to obtain the total Hamiltonian
density given by

H = H0 + H1. (16)

Here H0 is the free part of H determined by the usual Legendre map and eval-
uation of the expression for H1 requires the explicit use of Dirac’s theory. The
Hamiltonian densities H0v and H0h corresponding to Lv and Lh can be obtained
as

H0v = −1

2
w2

2x − w3
x (17)

and

H0h = −1

2
ww4x + 2wwxw2x. (18)

More than three decades ago Zakharov and Faddeev (1971) and Gardner
(1971) interpreted the KdV equation as a completely integrable Hamiltonian sys-
tem in an infinite dimensional phase space. The Hamiltonian form of (4) is given
by

ut = ∂x

δH
δu

(19)

with ∂x = ∂
∂x

, the Hamiltonian operator andH, the free Hamiltonian density. From
(6) and (19) we have

wt = δH
δwx

. (20)

Here the variational derivative

δ

δv
=

∑
n

(−∂x)n
∂

∂vn

, vn = (∂x)nv. (21)

Interestingly, we find that (17) and (20) give the KdV equation as written in (8)
while (18) and (20) do not lead to the same equation. This tends to imply that
H0h obtained from Lh is inconsistent with the canonical equation of Faddeev,
Zakharov and Gardner. Thus one would like to check if Lv and Lh stand for
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analytic representations (Santili, 1984) of the same equation. Interestingly, both
Lagrangians when used in the appropriate Euler-Lagrange equation

d

dt

(
∂L
∂wt

)
− δL

δw
= 0 (22)

give the same equation of motion as given in (8). Thus these two Lagrangians
must be gauge equivalent. We find that

Lh = Lv + ∂x

(
1

2
ww3x − 1

2
wxw2x − ww2

x

)
. (23)

Therefore, one could reasonably ask: why are (18) and (20) inconsistent? To get
a plausible answer to this question we recall the celebrated work of Currie and
Saletan (1966) who observed that Hamiltonians obtained from gauge equivalent
Lagrangians correspond to different canonical structure. Keeping this in view, we
venture to suggest a new canonical equation

wxt = −δH
δw

(24)

as a supplement of (20). This equation gives (7) or (8) for the Hamiltonian H0h

obtained by using the Helmholtz theorem. In the following we demonstrate that
(24) holds good for any member of the KdV hierarchy.

For higher order equations the simple-minded approach used in Calogero
(1982) does not work and one takes recourse to other methods like the dimensional
analysis (Talukdar et al., 2002, 2003). However, it can easily be verified that the
Fréchet derivative of every member of the KdV hierarchy is self-adjoint and (3)
can be used to derive an expression for the Lagrangian. For the second and third
members of the hierarchy

ut = u5x − 10uu3x − 20uxu2x + 30u2ux (25)

and

ut = u7x + 14uu5x + 42uxu4x + 70u2xu3x + 70u2u3x

+ 280uuxu2x + 70u3
x + 140u3ux (26)

we have

L(5)
h = 1

2
wtwx + 1

2
ww6x + 10

3
wwxw4x + 20

3
ww2xw3x + 30

4
ww2

xw2x (27)

and

L(7)
h = 1

2
wtwx + 1

2
ww8x − 14ww2xw5x − 14

3
wwxw6x − 70

3
ww3xw4x

+ 70wwxw2xw3x + 35

2
ww2

xw4x + 35

2
ww3

2x − 28ww3
xw2x. (28)
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Here the superscripts 5 and 7 merely indicate that the results in (27) and (28)
refer to fifth and seventh order equations. The free part of the Hamiltonian density
corresponding to (27) and (28) are given by

H(5)
0h = −1

2
ww6x − 10

3
wwxw4x − 20

3
ww2xw3x − 30

4
ww2

xw2x (29)

and

H(7)
0h = −1

2
ww8x + 14ww2xw5x + 14

3
wwxw6x + 70

3
ww3xw4x

− 70wwxw2xw3x − 35

2
ww2

xw4x − 35

2
ww3

2x + 28ww3
xw2x. (30)

One can easily verify that (29) and (30) when used in (24) give (25) and (26)
written in terms of w.

Some remarks on the canonical Equation (24) are now in order. Following
Currie and Saletan (1966) let us construct a gauge equivalent Lagrangian for Lv

in (10). To that end we choose the gauge term so as to cancel the second and third
terms of Lv . Obviously, the gauge term will be a sum of bilinear combination of
w, wx and w2x , that have the correct dimension of the terms in (10). Thus we write

L(g)
v = 1

2
wtwx − 1

2
w2

2x + w3
x − d

dx

(
a1ww3x + a2wxw2x + a3ww2

x

)
(31)

with ai’s as arbitrary constants. For the desired cancellation we must have a1 = 0,
a2 = − 1

2 and a3 = 1 giving a third-order Lagrangian for the KdV equation

L(g)
v = 1

2
wtwx + 1

2
wxw3x − 2wwxw2x. (32)

The Lagrangian in (32) is different from Lh in (14). Despite that the Hamiltonian
density constructed from (32) via (24) gives the KdV Equation in (7) or (8). In
fact, one can verify that all gauge equivalent Lagrangians corresponding to those
obtained by direct use of Hamilton’s variational principle (Talukdar et al., 2002,
2003; Calogero, 1982) lead to Hamiltonian densities which satisfy the canonical
Equation (24) and not the original equation written by Zakharov, Faddeev and
Gardner.

3. EQUATIONS WITH NONLINEAR DISPERSIVE TERMS

One of the FNE equations introduced by Rosenau and Hyman (1993) is given
by

ut + 3u2ux + 6uxu2x + 2uu3x = 0. (33)

We begin this section by examining if the condition of self-adjointness holds good
for this equation. As in the case of KdV hierarchy it will be convenient to work
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with w(x, t) rather than u(x, t). From (33), the differential equation for w(x, t)
is obtained in the form

wxt = −3w2
xw2x + 6w2xw3x + 2wxw4x. (34)

Equivalently,

wt + w3
x − 2w2

2x − 2wxw3x = 0. (35)

From (34) we write the Euler-Lagrange expression as

P [w] = −3w2
xw2x + 6w2xw3x + 2wxw4x. (36)

From (2) and (36)

DP = 6wxw2xDx + 3w2
xD

2
x − 6w2xD

3
x − 6w3xD

2
x − 2wxD

4
x − 2w4xDx. (37)

To construct the adjoint operator D∗
P of the above Fréchet derivative we rewrite

(37) as

DP =
4∑

j=1

Pj (w)Dj (38)

and make use of the definition (Olver, 1993)

D∗
P =

4∑
j=1

(−Dj )Pj (w). (39)

This gives

D∗
P = 6wxw2xDx + 3w2

xD
2
x − 2w2xD

3
x − 2wxD

4
x. (40)

Clearly, DP �= D∗
P verifying that the Fréchet derivative of P [w] in (36) is non-

self-adjoint. Thus (33) does not have an analytic representation (Santili, 1984)
to follow from a Lagrangian density and the variational structure of the system
remains undiscovered. This represents an awkward analytical constraint for the
equation of Rosenau and Hyman. A non-Lagrangian system does not allow one
to carry out a linear stability check as well as derive a field theory for particles
described by compactons. In the recent past, two of us made use of a heuristic
approach (Talukdar et al., 2003) to introduce Lagrangian system of FNE equations.
We now show that same objective can be achieved within the framework of the
Helmholtz theorem. We rewrite the Euler-Lagrange expression for P [w] in (36)
as

P [w] = αw2
xw2x + βw2xw3x + γwxw4x (41)
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and demand that there exists a choice for the constants α, β and γ such that P [w]
in (41) is self-adjoint. The Fréchet derivative for (41) can easily be obtained as

DP = 2αwxw2xDx + αw2
xD2x + βw2xD3x + βw3xD2x + γwxD4x + γw4xDx.

(42)

We now make use of (39) to write a self-adjoint operator corresponding to (42)
and find

D∗
P = 2αwxw2xDx + αw2

xD2x + (4γ − β)w2xD3x

+ 2(3γ − β)w3xD2x + γwxD4x + (3γ − β)w4xDx. (43)

From our demand of the variational self-adjointness we obtain from (42) and (43)
a relation between β and γ as

γ = 1

2
β (44)

while α remains totally arbitrary. Thus we would expect that

wxt = αw2
xw2x + βw2xw3x + β

2
wxw4x (45)

stands for a family of FNE equations for any choice of α and β. The special result
α = 3, β = 12, was obtained by two of us (Talukdar et al., 2003) in a relatively
recent publication. The Lagrangian density for (45) obtained from the homotophy
formula (3) is given by

Lh = 1

2
wtwx + α

4
ww2

xw2x + β

3
ww2xw3x + β

6
wwxw4x. (46)

The free particle Hamiltonian density for (46) is written as

H0h = −α

4
ww2

xw2x − β

3
ww2xw3x − β

6
wwxw4x. (47)

Equation (47) can be used in (24) to get (45). This serves as useful check on the
canonical equation introduced by us. It remains an interesting curiosity to examine
if (45) supports compacton solutions. In the following we deal with this.

In terms of u(x, t) (45) reads

ut + βuxu2x + β

2
uu3x − αu2ux = 0. (48)

Let us assume a solution of (48) in the form of a traveling wave

u(x, t) = f (x + λt) ≡ f (z), (49)



372 Ghosh, Das, and Talukdar

with λ, the velocity of propagation of u(x, t). From (48) and (49) we get the
ordinary differential equation

λ
df

dz
+ β

df

dz

d2f

dz2
+ β

2
f

d3f

dz3
− αf 2 df

dz
= 0. (50)

Imposing appropriate boundary conditions (50) can be integrated twice to get
(

df

dz

)2

= f

β

(α

3
f 2 − 2λ

)
. (51)

We have verified that for (48) to support a compacton solution we must impose
the condition α > 0 and β < 0. This relation tends to serve as a constraint on the
choice of α and β. For α = 3 and β = −1, (51) can be solved to get (Wolfram,
2000)

f =
√

2λ cos

[
2 Jacobi amplitude

[
−λ1/4z

23/4
, 2

]]
. (52)

A compacton solution similar to that in (52) has also been reported by Rosenau
and Hyman (1993)

4. CONCLUSION

The Hamiltonian structure of integrable nonlinear evolution equation is based
on a mathematical formulation that does not make explicit reference to Lagrangians
(Olver and Rosenau, 1996; Ghosh et al., 2003). We believe that the Lagrangian
approach is quite interesting because here one can derive all physico-mathematical
results from first principles. In this work, we have seen that the Helmholtz solu-
tion of the inverse problem for the variational calculus serves this purpose for
the equations in the KdV hierarchy. However, one must reduce the order of the
derived Lagrangians (Lh) such that the corresponding Hamiltonian densities could
be consistent with the canonical equation of Zakharov and Faddeev (1971) and
Gardner (1971). The free Hamiltonian densities (H0h) corresponding to (Lh) give
the equations of motion via a new canonical equation. A similar observation in
the context of particle dynamics was made by Currie and Saletan (1966) about
40 years ago.

An evolution equation for solitary waves with compact support is shown
to be non-Lagrangian since the Fréchet derivative of its Euler-Lagrange expres-
sion is non-self-adjoint. We have derived a straightforward method to regain the
variational self-adjointness and thus introduce a family of Lagrangian system of
FNE equations. The Lagrangian and the Hamiltonian densities of the new set of
equations exhibit properties similar to those found for the KdV hierarchy. About
a decade ago, Cooper et al. (1993) introduced a family of FNE equations similar
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to those of us by working with an ansatz for the Lagrangian density given by

L(l, p) = 1

2
wxwt − (wx)l

l(l − 1)
+ α(wx)p(w2x)2. (53)

The result in (53) appears to be a simple variant of the Lagrangian density given
in Calogero (1982) and quoted by us (see (10)). However this choice is interesting
since the Fréchet derivatives of the Euler-Lagrange expressions resulting from (53)
are self-adjoint. Relatively recently, a generalized fifth-order KdV equation has
been found to support a compacton solution (Cooper et al., 2001). One can check
that the variational inverse problem followed by us and the conclusion derived
therefrom also apply for the fifth-order Rosenau-Hyman type equation (Rosenau,
1999).
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